Embedded Neural Networks

نویسندگان

  • Christian Scheier
  • Rolf Pfeifer
چکیده

Using concepts and tools of embodied cognitive science, we investigate the implications of embedding neural networks in a physical structure, the body of a robot. Through this embedding the loop from a network’s outputs to its subsequent inputs is closed. This closure enables an embedded network to actively generate its own input data instead of only passively processing predesigned input patterns. We argue that this simplifies some of the hard problems faced by disembodied neural networks. It can also help to deepen our understanding of biological neural networks, which are likewise embedded in a physical structure, the animals’ body. The main arguments are illustrated with a series of case studies with simulated and physical mobile robots that are controlled by hand-designed as well as evolved neural networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steganalysis of embedding in difference of image pixel pairs by neural network

In this paper a steganalysis method is proposed for pixel value differencing method. This steganographic method, which has been immune against conventional attacks, performs the embedding in the difference of the values of pixel pairs. Therefore, the histogram of the differences of an embedded image is di_erent as compared with a cover image. A number of characteristics are identified in the di...

متن کامل

Embedded spiking neural networks

In this paper we introduce the ongoing research at our department concerning hardware implementations of spiking neural networks on embedded systems. Our goal is to implement a spiking neural network in reconfigurable hardware, more specifically embedded systems. Keywords— Hardware neural networks, embedded sys-

متن کامل

Knowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring

Phytoplankton biomass within the Saginaw Bay ecosystem (Lake Huron, Michigan, USA) was characterized as a function of select physical/chemical indicators. The complexity and variability of ecological systems typically make it difficult to model the influences of anthropogenic stressors and/or natural disturbances. Here, Artificial Neural Networks (ANNs) were developed to model chlorophyll a con...

متن کامل

Biologically Sound Neural Networks for Embedded Systems Using OpenCL

Artificial neural networks (ANNs) are general function approximators and noise resistant, and therefore popular in many applications. Researchers in the field of computational intelligence have shown that biologically sound spiking neural networks (SNNs) are comparable, or even more powerful than traditional artificial neural networks(ANNs) [1]. However, such neural networks are usually computa...

متن کامل

How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies

Learning long-term temporal dependencies with recurrent neural networks can be a difficult problem. It has recently been shown that a class of recurrent neural networks called NARX networks perform much better than conventional recurrent neural networks for learning certain simple long-term dependency problems. The intuitive explanation for this behavior is that the output memories of a NARX ne...

متن کامل

Efficient Stochastic Inference of Bitwise Deep Neural Networks

Recently published methods enable training of bitwise neural networks which allow reduced representation of down to a single bit per weight. We present a method that exploits ensemble decisions based on multiple stochastically sampled network models to increase performance figures of bitwise neural networks in terms of classification accuracy at inference. Our experiments with the CIFAR-10 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000